x^2+5x+2x+4+x=180

Simple and best practice solution for x^2+5x+2x+4+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+5x+2x+4+x=180 equation:



x^2+5x+2x+4+x=180
We move all terms to the left:
x^2+5x+2x+4+x-(180)=0
We add all the numbers together, and all the variables
x^2+8x-176=0
a = 1; b = 8; c = -176;
Δ = b2-4ac
Δ = 82-4·1·(-176)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16\sqrt{3}}{2*1}=\frac{-8-16\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16\sqrt{3}}{2*1}=\frac{-8+16\sqrt{3}}{2} $

See similar equations:

| –9p+6=–8p | | -1/8+5/8x=-3/44 | | –8h=–8−10h | | 1−2v=10−3v | | 6q=–9+7q | | –9u=–10u−5 | | 10-b=-3b-10 | | 2/3x+1/2x=5/6 | | -(1)/(8)+(5)/(8)x=-(3)/(44) | | 16b-10b=6 | | -6(4-x)=-3x+1 | | 12x-4x-112=12x+48 | | -20(2t+19)-13=-402 | | y=(-7)=5 | | 8-2f=-9-7+10f | | -5(4-x)=-3x+5 | | y/3=9/10 | | 9t=–9+10t | | -4(4-x)=-3x+7 | | 10k+17-20=1 | | 25x+29=90 | | 6c=10+5c | | 5^(x-9)=1/3125 | | 9(4-x)=-3x+1 | | t/9=11 | | 10(n+2)=9(n+6) | | 19(-2f+16)=300 | | 9(4-x=-3x+1 | | 6(-1-6z)=-18 | | 12c-11c=9 | | 4n=–8+8n | | 4+x2=4 |

Equations solver categories